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Hannes L. Röst,1, 2, ∗ George Rosenberger,1, 2, ∗ Pedro Navarro,1 Ludovic Gillet,1 Saša M. Miladinović,1, 3 Olga T.
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To the Editor:

LC-MS/MS-based proteomics is the method of choice
for large-scale identification and quantification of pro-
teins in a sample [1]. Several LC-MS/MS methods have
been developed that differ in their objectives and per-
formance profiles [2]. Among these, shotgun proteomics
(also referred to as discovery proteomics) using data-
dependent acquisition (DDA) and targeted proteomics
using selected reaction monitoring (SRM, also referred to
as multiple reaction monitoring, MRM) have been widely
adopted. In the choice between the two, the researcher
is faced with the trade-off between obtaining snapshots
of extensive fragment ion data (full MS/MS spectra) of a
population of peptides sampled from the pool of avail-
able peptides or obtaining time-resolved fragment ion
intensities (ion chromatograms) for a selected number
of predetermined peptides targeted in the measurement
[1, 3–6]. While shotgun proteomics allows discovery-
driven research and offers high throughput, its sensitivity
is strongly sample dependent and it can suffer from in-
consistent identification reproducibility across samples,
sampling bias and ambiguity in spectra assignments to
peptides. In contrast, SRM offers high reproducibility, a
larger dynamic range, more sensitivity and good signal-
to-noise ratio but comes at the cost of significantly lower
throughput [2, 7, 8].

As an alternative to data-dependent shotgun pro-
teomics and targeted SRM, some mass spectrometers can
also be operated in data-independent acquisition (DIA)
mode [9–21]. There, the instrument fragments all pre-
cursors generated from a sample that are within a pre-
determined m/z and retention time range. Usually, the
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instrument cycles through the precursor ion m/z range
in segments of specified width. Multiple variations of the
DIA theme have been described with different instrument
types and setups, duty cycles and window widths. Meth-
ods like MSE fragment all precursors [11] while others
such as PAcIFIC use precursor selection windows as small
as 2.5 Da [12] (see Gillet et al. [22] for a recent overview
of different DIA approaches). The obvious advantage
of these methods is that they create a complete record
of the fragment ion spectra of all precursors generated
from a sample, therefore combining the high throughput
of shotgun proteomics with the high reproducibility of
SRM. The resulting data is continuous in time and frag-
ment ion intensity, thus increasing the dimensionality of
shotgun proteomics data where fragment ion intensities
are recorded only at selected time points or SRM data
where continuous time profiles are acquired but only for
selected fragment ions. However, to limit analysis time
and sample amount, larger precursor isolation windows
than in shotgun proteomics or SRM are typically used.
This leads to highly complex, composite fragment ion
spectra from multiple precursors and thus to a loss of
the direct relationship between a precursor and its frag-
ment ions, making subsequent data analysis nontrivial.
In most previous studies, researchers have either searched
the multiplexed spectra from DIA data directly [10, 12]
or after computation of pseudo-spectra containing frag-
ments assigned to a precursor based on their coelution
profiles [14, 15, 17–19]. However, these approaches suffer
from the high complexity of the data and the fact that
errors in the generation of pseudo-spectra will propagate
through the analysis workflow. Recently, we have pro-
posed a fundamentally different approach for the analy-
sis of DIA data and implemented it in a method called
SWATH-MS [22]. In SWATH-MS, precursor ions from
sequential segments of 25 mass units are concurrently
fragmented and the resulting composite fragment ions are
recorded at high mass accuracy in a time of flight (TOF)
analyzer. The SWATH-MS data analysis strategy has
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FIG. 1: SWATH-MS data-independent acquisition and
OpenSWATH analysis. a) The DIA method used here
consists of sequential acquisition of fragment ion spectra with
overlapping precursor isolation windows. Here, a swath win-
dow width of 25 Da is depicted which allows stepping through
a mass range of 400 - 1200 m/z in 32 individual steps. If all
fragment ion spectra of the same isolation window are aligned,
a MS2 map (so-called swath) is obtained (right side, swath
4 out of 32 is schematically shown). Figure adapted from
Gillet et al. [22]. b) The individual steps performed by the
OpenSWATH software are (illustrated by a peptide precursor
with 3 transitions: red, green and blue): 1) Data conversion,
2) Retention time alignment, 3) Chromatogram extraction,
4) Peak group scoring, 5) Statistical analysis to estimate an
FDR (false discovery rate). See main text (Results) for a
more detailed explanation of the workflow.

its roots in the idea of targeted data analysis, whereby
extracted ion chromatograms (XIC) of the most intense
transitions of a targeted peptide are generated from all
corresponding MS2 spectra, producing chromatographic
data that is similar to SRM traces (Figure 1a). This ap-
proach reduces the complexity of the data significantly,
facilitating data analysis while retaining the complete
fragment ion information of all precursors. So far, the

data analysis was performed semi-manually and to our
knowledge, no automated workflow has been published.

Here we present OpenSWATH, the first open source
(Modified BSD Licence) software that allows targeted
analysis of DIA data in an automated fashion. The cross-
platform C++ software relies only on open data formats,
allowing it to analyze DIA data from multiple instrument
vendors (see Supplementary Note 1) [23]. The algorithm
can be summarized in the following 5 steps (see Figure 1
for a concise description of the algorithm as well as Sup-
plementary Notes 2-4):
1) Data Conversion: The acquired SWATH-MS data

together with an assay library comprise the input data
which are converted to suitable open file formats (mzML
and TraML [24, 25]). The assay library contains precur-
sor and fragment ion m/z values (transitions) as well as
relative fragment ion intensities and normalized peptide
retention times. Decoy assays are appended to the tar-
get assay library using the OpenSwathDecoyGenerator
for later classification and error rate estimation.
2) Retention time alignment : Each run is aligned

against a previously determined normalized retention
time space using reference peptides whose mappings to
the normalized space are known (e.g. spiked-in peptides),
as described by Escher et al. [26]. Outlier detection is
applied afterwards to remove wrongly assigned reference
peptides and to evaluate the quality of the alignment.
3) Chromatogram Extraction: Using the m/z and re-

tention time information from the assay library, the work-
flow extracts an ion chromatogram from the correspond-
ing MS2 map, producing integrated fragment ion count
vs. retention time data. The extraction function (Top-
hat or Bartlett) and m/z window-width can be specified
to account for the instrument-specific MS2 resolution.
4) Peak group scoring : The core algorithm identifies

so-called “peak groups” (positions in the chromatograms
where individual fragment traces co-elute), and scores
them using multiple, orthogonal scores (Supplementary
Note 4). These scores are based on the elution profiles of
the fragment ions, the correspondence of the peak group
with the expected retention time and fragment ion in-
tensity from the assay library, as well as the properties
of the full MS2 spectrum at the chromatographic peak
apex.
5) Statistical analysis: The separation between true

and false signal is achieved using a set of decoy assays
that were scored exactly the same way as the target as-
says. The false discovery rate (FDR) can then be esti-
mated for example by the mProphet algorithm [27]. If
multiple runs are present, a peak group alignment can
be performed to annotate signals that could not be con-
fidently assigned using data from a single run alone as
described previously for DDA and SRM data [28].

To validate and benchmark our SWATH-MS data anal-
ysis algorithms, we created a “gold standard” dataset
of known composition (termed SGS for SWATH-MS
Gold Standard), consisting of 422 chemically synthesized,
stable isotope-labeled standard (SIS) peptides [29, 30].
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FIG. 2: Identification and quantification accuracy of OpenSWATH on the SGS dataset. 422 peptides were spiked
into 3 different proteomic backgrounds in a 10-step dilution series to produce a “gold standard” dataset (see main text).
a) Pseudo-ROC curve showing sensitivity (recall of true signals) vs. the false positive rate, achieving an AUC > 0.9 using
OpenSWATH (since misidentified peaks cannot be recovered even at high score cutoff values, a sensitivity of 1.0 cannot be
reached). b) The estimated FDR (by mProphet) vs. manually curated, true FDR on the SGS dataset. The continuous line
at 45 degree shows the optimal values. c) Coefficients of variation (CVs) across the 3 technical replicates are below 20 %
CV (no significant difference between OpenSWATH and manual quantification for yeast and human backgrounds using the
Mann-Whitney test). d) Peptide intensities quantified by OpenSWATH for all 10 dilution steps, normalized to the most intense
concentration shown for the yeast proteomic background. The red dotted line indicates the ideal values (two-fold difference to
the next dilution), the number of peaks considered is given on the top. For panels c and d, only peptides that were detectable
above a cutoff of 1 % FDR were analyzed and only true positives were considered. For panel c, only peptides present in all
triplicates were analyzed.

To simulate differently abundant peptides in proteomic
backgrounds of varying complexity, the peptides were
added in 10 dilution steps at final concentrations rang-
ing from 0.058 fmol/µL to 30.0 fmol/µL into three differ-
ent backgrounds (trypsinized whole-cell protein extracts
from Homo sapiens, Saccharomyces cerevisiae or water,
normalized to 1 µg of total protein, see Supplementary
Note 5). To explore the lower end of the dynamic range,

we chose specifically to study the influence of background
complexity on ion suppression and signal-to-noise (see be-
low and Supplementary Note 5.4). These samples were
measured on the AB SCIEX TripleTOF 5600 System in
DIA mode as described previously [22]. Using an assay
library for 342 peptides, the 30,780 chromatograms were
extracted in Skyline [31] and manually analyzed to de-
termine the true peak group (if present). In parallel, the
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same data were processed with OpenSWATH and results
were compared to those generated by the manual analy-
sis.

To assess the identification accuracy of OpenSWATH,
we calculated the pseudo-receiver operator characteris-
tics (ROC) using the best peak group per chromatogram
and computed an AUC > 0.9 (Figure 2a). At a fixed
FDR of 5 % (as computed by mProphet [27]), the soft-
ware could achieve a recall of 87.5 % and a precision of
94.3 %. Furthermore, we noticed that the misidentifica-
tion rate (i.e. cases where the highest scoring peak group
is not the correct peak group) is below 0.7 %. Thus, most
of the false identifications were caused by peak groups
that were not confidently assigned by manual curation,
rather than by misidentification by OpenSWATH. Fur-
thermore, we found a good correspondence between the
estimated FDR and the true, manually determined false
positive rate (with a slight underestimation of 0.9 % at
1 % FDR, see Figure 2b), indicating that OpenSWATH
can identify peptides with high precision and that it sup-
ports the accurate selection of the desired false positive
rate (however, accurate error rate estimations critically
depend on a suitable decoy strategy; see Supplementary
Note 1.5 [32]).

In analogy to SRM, OpenSWATH uses the sum of the
integrated chromatographic fragment ion peak areas of
SWATH-MS data to quantify peptides. When analyz-
ing the coefficients of variation (CV) of quantified sig-
nals reported in all technical replicates, we consistently
found mean CVs below 20 % (Figure 2c). By normal-
izing the intensities of each peptide signal to the inten-
sity of the most concentrated run (1x dilution) we could
evaluate the quantification accuracy achieved by the soft-
ware over large fold changes (Figure 2d). Since studying
quantification accuracy was our goal here, we did not in-
clude misidentified peptides in our analysis. We found
that the manually determined changes between subse-
quent dilution steps (water: 2.35±1.0, yeast: 2.03±0.45,
human: 2.11±0.53, mean fold change ± standard devi-
ation) matched closely with the changes determined us-
ing OpenSWATH (water: 2.62±1.43, yeast: 2.02±0.44,
human: 1.96±0.39). From this we computed a devi-
ation from the theoretical value of 31.2 %, 1.0 % and
2.0 % and a coefficient of variation of 54.6 %, 21.9 % and
20.2 % for the OpenSWATH quantification (respectively
for the three backgrounds, outliers removed), suggesting
that OpenSWATH quantification is suitable for obtaining
relative quantification values for differentially abundant
peptides. The quantification in water is less accurate and
precise than in the yeast and human backgrounds, be-
cause without a matrix, the spiked-in SIS peptides were
prone to surface adsorption during sample preparation
(Supplementary Note 5.5)

We next explored the performance of OpenSWATH in
identifying and quantifying peptides from a full tryptic
digest of a Streptococcus pyogenes microbial sample. To
study proteomic changes that occur upon vascular inva-
sion of the pathogen, we grew S. pyogenes (strain SF370)

in 0 % and 10 % human plasma in biological duplicates
and analyzed the samples in SWATH-MS mode on an
AB SCIEX TripleTOF 5600 System. First, we created
a spectral library of S. pyogenes by combining the mea-
surements of 10 fractions of the S. pyogenes proteome in
DDA (shotgun) mode on the same instrument, providing
an extensive coverage of the expressed S. pyogenes pro-
teome, with 1322 proteins (out of 1905 ORFs) mapping
to 20,027 proteotypic peptide precursors at 1 % peptide-
spectrum match FDR (see Figure 3a).

Using OpenSWATH, we identified and quantified 927
proteins (out of 1322 targeted proteins) of S. pyogenes
consistently in each of the four LC-MS/MS runs at 1 %
FDR. Out of these, 767 proteins were quantified by more
than one peptide per protein. Thus, we achieved over
70 % coverage of the expressed proteome spanning more
than three orders of dynamic range in estimated pro-
tein ion count (see Figure 3b) in a single injection. The
results from these analyses surpassed previous shotgun
proteomics and SRM approaches in terms of number of
quantified proteins at 1 % FDR (765 proteins were quan-
tified in an extensive SRM study with multiple injections
per sample and 523 proteins were identified in a shotgun
proteomics study with 98.92 % overlap with our data, see
Supplementary Note 1.4) [28, 33]. The fraction of the as-
say library which could not be detected may be partially
explained by the fact that not all proteins were expressed
under the conditions studied and that these proteins have
also rarely been identified in earlier studies (nearly 80 %
were never identified in PeptideAtlas [34]).

OpenSWATH identified 82 proteins, which showed sig-
nificant differences in abundance between the two con-
ditions in two biological replicates (see Figure 3 c-d
and Supplementary Note 7 for a complete list). 10 out
of 13 proteins associated with fatty acid biosynthesis
(FAB) are significantly downregulated, consistent with
results of previous studies on S. pyogenes [33]. As ex-
pected, we also found several known virulence factors to
be upregulated (e.g. HasA, HasB, Slo, SpeC and CovR)
[35, 36]. Additionally, we observed downregulation of an
ABC transporter complex for inorganic phosphate im-
port (PstB1, PstB2 and PstS), as well as significant up-
regulation of six proteins involved in pyrimidine biosyn-
thesis (PyrF, PyrD, PyrE, PyrB, PyrR and Upp). While
these results agree with previous observations on S. pyo-
genes, they also provide the first indications that the
Pst system is involved in responding to human plasma
in S. pyogenes. In conclusion, our results derived from
SWATH-MS datasets analyzed with OpenSWATH are
consistent with many previous suppositions about bac-
terial virulence but additionally are able to provide the
foundation for new hypotheses (see Supplementary Note
7).

By combining the most advanced DIA technology with
a software capable of analyzing the resulting complex
datasets, we were able to significantly scale-up the tar-
geted proteomic approach described earlier in Gillet et
al. and show that targeted analysis of DIA data allows
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FIG. 3: Streptococcus pyogenes exposed to human plasma (0 % plasma vs. 10 % plasma). Analysis of two biological
replicates with OpenSWATH at 1 % assay FDR yields over 900 proteins and 6000 peptides consistently quantified over four
SWATH-MS runs. a) Proteome coverage of S. pyogenes: of 1905 annotated ORFs, 1322 were detected using mass spectrometry
after extensive fractionation (constituting the assay library) and 927 could be detected consistently in each of four unfractionated
samples using SWATH-MS. b) Protein abundances of S. pyogenes as detected by SWATH-MS estimated by the ion count of the
most intense peptide. c) Volcano plot (log-fold change vs. log-p-value) of protein expression determined by ANOVA analysis
on two biological replicates. Red dots indicates fold changes above 1.5 fold and a Benjamini & Hochberg corrected p-value
below 0.05. d) The fold-changes of all 13 proteins involved in fatty acid biosynthesis (FAB) in S. pyogenes, in the same order
as they appear on their respective operons. All proteins are significantly downregulated except accD, accB and fabT (where
fabT is a transcriptional repressor and not expected to be downregulated).

high-throughput analysis of microbial whole cell lysates,
as demonstrated on the example of S. pyogenes. Using
the SGS validation dataset we further demonstrate high
sensitivity of the method and software for identification
and quantification. Our open source software is available
as standalone executable at http://www.openswath.org
and is also packaged within OpenMS [37], which will
make targeted DIA data analysis immediately accessi-
ble to a large research community. Due to the nature of
DIA data, which contain a complete record of all frag-
ment ions of a biological sample, reanalysis of a dataset
is possible completely in silico which allows researchers

to re-query data with their specific hypothesis in mind.
With the availability of fast DIA-capable instruments,
assay libraries, available in proteome-wide coverage due
to large-scale peptide synthesis efforts and now, an auto-
mated software for DIA targeted data analysis, all pieces
for a successful and more widespread use of this powerful
technology are now available.
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